
01 SplitCert Passwordless Access to Databases

SplitCert
Passwordless Access to Databases

Trust no one, not even us.

Invisibility

BastionZero’s SplitCert eliminates the
operational overhead and security risk
associated with maintaining, storing and
distributing database passwords.

SplitCert uses Mutual TLS (mTLS) and cryptographic
multiparty computation (MPC) to provide password-free
authentication to databases.

Mutual TLS is a method for mutual authentication with
TLS. It allows a client and database to verify that the other
party to the connection is who it claims to be by verifying
that it holds the correct private key that corresponds with
the public key in the presented TLS certificate. When
mTLS is used for database authentication, the database
client authenticates itself by presenting a client TLS
certificate which is the child of a preconfigured, trusted
certificate to the database.

Each time an authorized user needs access to a database,
SplitCert constructs a short-lived client certificate, on-the-
fly, for mTLS authentication as the appropriately-scoped
user on the database. (For example, alice@example.com
logs in as the postgres user using a short-lived mTLS client
certificate.).

But, the unique aspect of SplitCert is that it avoids creating
a single point of compromise. That’s because the key used
to construct the short-lived mTLS client certificates is not
stored in a single location that could be compromised.

SplitCert provides a true zero trust
database access experience where
there is no need to trust anyone,
including BastionZero, with sensitive
database passwords. Instead, the
database authentication factor is split
into two independent shards, and
each shard is stored in an independent
location. Then, whenever an authorized
user needs access, the shards are
used to construct short-lived database
access credentials. Storing shards
in independent locations allows
SplitCert to eliminate the single point of
compromise around database access
and reduces the risk of data breach.

Instead, SplitCert splits the database authentication factor
into two shards. One shard is stored in the BastionZero
cloud service while the other shard is stored in the
customer’s infrastructure. Although neither shard is
sufficient to sign anything on its own, signatures from each
can be combined using cryptographic MPC to construct
the client certificate on the fly, without ever putting the two
shards back together, and without ever creating a single
point of compromise.

SplitCert is invisible to end users
and supports database access via
popular existing database clients
and workflows. BastionZero’s initial
release of SplitCert supports access
to two popular databases: self-hosted
Postgres and MongoDB.

Passwordless Database Access

What is BastionZero’s SplitCert?

How does it work?

Mutual TLS (mTLS)
for Database Authentication

02 SplitCert Passwordless Access to Databases

BastionZero’s SplitCert uses a form of MPC
that allows a mTLS client certificate to be
computed from two independent private-
key shards held by two independent parties.
One of the shards is stored in the BastionZero
cloud, and the other shard is stored in the agent
in the customer’s environment. Storing shards in
independent locations allows SplitCert to eliminate
the single point of compromise. MPC is used to
generate a short-lived mTLS client certificate from
the two shards. The certificate that is then used to
authenticate the user to the database.

If a user wishes to connect to a database, they
must first pass through the usual BastionZero
SSO, MFA, and policy check before connecting
through the BastionZero cloud. Once those
checks are completed, an authenticated channel
is established between the end user and
BastionZero agent in the customer’s environment.
(See step (1) in the figure below)

Next, the agent creates the contents of the
certificate, and then initiates the MPC protocol
used to generate a signature on the certificate.
The MPC protocol involves the agent (which has
one shard) and a certificate microservice in the
BastionZero cloud (which has the other shard).

Once the MPC protocol completes and the
certificate is fully signed, it is returned to the agent.
Now, the agent presents the client certificate
when establishing the TLS connection to the
database (See step (5)). All traffic between the
user and the database goes from client to agent
over a BastionZero MrZAP authenticated channel,
and then through the TLS connection from agent
to database. Audit logging is performed at the
connection node.

BastionZero’s SplitCert MPC Protocol

BastionZero Agent

MPC is a cryptographic primitive that allows
multiple parties to jointly compute a function
over their inputs while keeping those inputs
private. The cryptography in this model
protects participants’ privacy from each
other. In this way, security is preserved
even if one party is compromised.

Cryptographic Multi Party
Computation (MPC)How It Works

The BastionZero agent runs in the customer
environment, on a server, container and kubernetes
cluster that is “close to” the database. The agent
should have the ability to create a network connection
to the database (i.e., because the appropriate security
groups and ACLs are established). If the database is
self-hosted, then the agent may be deployed on the
same server as the database.

For more information about the BastionZero
agent, see the BastionZero documentation.

Source for the Diagram

ABOUT

BastionZero
BastionZero delivers zero trust access to server, database, kubernetes
and web infrastructure without creating a single point of compromise.
It pairs with your IdP to quickly grant access with policy controls and
observability — without a mess of passwords, VPNs, and SSH keys.

About the unique MrZAP protocol that BastionZero uses to create
authenticated channels from client to agent, visit www.bastionzero.com

Learn more about BastionZero

The MPC Protocol

Creating the shards. Signing a certificate on the fly.

The MPC protocol used to create the signature is laid out in a technical paper from 2001
The Security of Practical Two-Party RSA Signature Schemes by Mihir Bellare and Ravi Sandhu.

The BastionZero cloud operates a certificate
microservice that generates an RSA public-
private key pair, where the private key is d. The
RSA public key is certified by a root certificate
and configured with the database. The
certificate microservice will split the RSA private
key, d, into two shards d1, d2 where:

d1 is chosen at random and
d1 + d2 = d [modulo the Euler totient of N]

The second shard d2 is sent to the BastionZero
agent that will be used for access to the
database. the original RSA secret key d is
deleted. Splitting the secret into two parts, and
storing one in the BastionZero cloud and the
other in the customer’s environment eliminates
the certificate as a single point of compromise.

To creates the contents of the certificate,
the agent first chooses a fresh signing key
pair (SK,PK) that it will use for the database
mTLS connection. It then creates a mTLS client
certificate for PK and then uses the RSA signature
algorithm to sign the certificate using its shard
d2, which produces a partial RSA signature sig2.
The certificate is then sent over the BastionZero
cloud service (See step (2)) which uses the RSA
signature algorithm to signs the certificate using
its shard d2 producing the partial signature sig1.

Next, the agent multiplies the two partial
signatures together to obtain the final signature as
sig = sig1sig2 . The signature sig is the complete
signature on the client certificate (See step (4)).

03 SplitCert Passwordless Access to Databases

