

BASTIONZERO.COM

BastionZero’s Trustless Access Platform connects teams to infrastructure in any cloud or data center, without any additional infrastructure to
deploy or manage. Traditional zero-trust access tools have a fatal flaw. In their rush to improve security by eliminating user-held credentials,
they store all those credentials in a single centralized location, where they can be compromised, all in one go, by attackers. BastionZerosolves
the problem via a proprietary cryptographic technique that eliminate these single points of compromise.
BastionZero embraces the concept of limiting trust in the user by completely eliminating
passwords and credentials for access to individual infrastructure targets. And beyond this,
BastionZero avoids the pitfalls lead to the Colonial Pipeline, Uber and Medibank breaches, by
going to great lengths to eliminate the trust placed in a single highly-privileged authority.
BastionZero does not require organizations parties to store credentials in PAM or a highly
sensitive bastion host. Instead, they subscribe to BastionZero cloud service. Using a third-party
cloud service has major security implications, so this cloud service never stores the credentials
for their access targets. In fact, our primary design philosophy is a radical commitment to
minimize and eliminate trust assumptions in the cloud service. We do this by requiring users to
authenticate against two independent roots of trust.

One root of trust is the BastionZero cloud service, and the other root of trust is the relying party’s
IdP. That way, if one root of trust is compromised, the other can still protect the organization from
a breach. Additionally, each user in MrTAP is issued public keys attested to by their IdP. This
prevents BastionZero’s cloud service from modifying commands send from user to target, or
from injectings its own command. This also allows the cloud service to record logs of the actions
that users take, so that potentially compromised end-hosts or servers do not need to be trusted
to accurately record and send logs.

Finally, BastionZero is committed to a cloud-native approach where users log into targets, not networks. Instead of requiring organizations to
set up VPN, SASE, firewalls and DLP systems to control users’ access to a network, BastionZero uses a centralized policy manager to control
users’ access to individual targets. BastionZero’s phone-home architecture eliminates the need for a VPN, and its passwordless solutions
leverage cryptographic techniques like multi-party computation to eliminate the need to maintain a PAM or secrets vault that store
credentials to individual targets. We do not ask organizations to manage and administrate a growing array of network and cloud security tools,
and users to wade through complex multistage workflows to gain access. Instead, BastionZero provides a frictionless solution for
authentication, authorization, auditing and access to targets in any cloud or datacenter. BastionZero has native support for remote shells,
SSH, webservers, databases, Kubernetes and can secure any client-server application through its service.

BastionZero has a
unique trustless
security model that
uses two independent
roots of trust that
jointly control access
to each infrastructure
target. That way, a
compromise of one
root of trust does not
lead to a compromise
of your infrastructure.

1

Introducing BastionZero

The BastionZero
Cloud Service

Your SSO
Identity Provider

Validate Token

Validate Token

I’m Alice

I’m Alice
Let me access

Server 1 as root

BastionZero Token
SSO

Email

Org

Key

google.com

alice@acme.co

Acme Co

alice public key

Signature

SSO

Policy

Logs

M
F
A

CredentialsSSO + MFA

Let me access server 1
I’m Alice

BASTIONZERO.COM

Reducing trust in the user.

Reducing trust in highly-privileged third parties.

BastionZero allows engineering and security teams to embrace the principle of least privilege. In recent years, it has become a best practice
to limit the amount of trust placed in a given user. For example, instead of trusting Alice with a long-lived SSH key that grants her root access
to a sensitive server, an organization might use a privilege access management (PAM) system to grant Alice a server credential that expires
a few hours later. Instead of trusting Bob to hold a sensitive database password on her laptop, Bob might instead log into a bastion host that
stores that database password, and connect into the database from the bastion, without ever seeing the database password.

Adversaries regularly steal user credentials in order to attack organizations. Examples abound. In 2020, PAN Unit 42 found that the number
one initial attack vector for ransomware was through Windows RDP services. In 2021, there were gas shortages because Colonial Pipeline
was breached by an adversary that stole an old VPN password. In 2022, top technology companies like Uber and Dropbox were breached
because an individual user’s login credential was compromised. In 2022, private health information of millions of Australian citizens was
stolen due to a compromise of a Medibank employee’s credential.

BastionZero also solves a key problem that is often forgotten in the rush to limit the trust placed on the user. Credentials have to be stored
somewhere. Where should they be stored! You can store credentials on a bastion host, or in a secrets vault, or in a PAM or in a proxy. You can
control access via Single Sign On (SSO). You can set up certificate authority that grants short lived credentials. But in all these solutions, the
common thread is: there is a single highly-privileged authority that is trusted to store credentials and/or determine which user is granted
credentials to access a given target. So what happens if that trusted highly-privileged authority is compromised!

2

Traditional zero-trust tools create a single point of compromise.
Credentials are stored centrally, rather than on the user’s device

BastionZero’s Design Philosophy

A cloud-native approach: log into targets, not networks!

BASTIONZERO.COM

3

The risk here is real. When Colonial Pipeline was hacked, the adversary went after a trusted highly-privileged authority – the Active
Directory server that was trusted with admin credentials to most of Colonial Pipeline’s infrastructure. When Uber was hacked, the
adversary went after a trusted highly-privileged authority – the secrets server that stored admin credentials to critical Uber
infrastructure. When Medibank was hacked, the adversary went after a highly-privileged authority – the bastion host that held login
credentials to a database containing private health information. As these incidents illustrate, the problem of securing infrastructure
access goes well beyond trust placed to users. It also implicates the trust placed in the highly-privileged authority that controls access

To solve this problem, BastionZero has developed a unique trustless security model that uses two independent roots of trust that jointly
control access to each target. Neither root of trust has credentials or unilateral access to any of the access targets; that way, a compromise
of one of the roots of trust does not lead to a compromise of the organization.

BastionZero is a cloud-native platform that covers the 4As of remote access — access, authentication, authorization and auditing. The goal
is to simplify user workflows and improve administrator's productivity by making it easy to enforce least-privilege access, to on and off-board
users, and to capture information about exactly how each user interacted with each target.

With BastionZero, organizations don’t need to have one set of solutions that control access to the network (VPN, firewalls, etc) and another
set controlling access to the target (passwords, bastion hosts, PAM systems, etc). Instead, BastionZero offers a single cloud-agnostic
platform that controls access from the users’ machine all the way to each individual target. Instead of setting up ACLs and firewall rules,
BastionZero uses a phone-home architecture along with a centralized policy manager to determine who has access to what target, when,
and for how long.

A truly passwordless approach.
Instead of handing out SSH keys and database passwords, BastionZero provides passwordless access to targets. Instead of asking users to
log into a VPN and maintain multiple passwords, SSH keys, kubeconfig files and database passwords, with BastionZero, users can access
targets just by completing an SSO to the identity provider and an independent MFA to the BastionZero cloud service. Credentials are NOT
stored in a vault or secret store, and further, credentials are NOT accessible to the BastionZero cloud service; instead, we use cryptographic
techniques to split passwords and credentials across multiple roots of trust. Our cryptographic protocols work silently, under the hood, to
completely eliminate passwords and credentials for individual targets.

USER RESOURCES

MrTAP

MU
LTI-

ROOT-TRUSTLESS ACCESS PROTOCOLACCESS

AUTHORIZATION

Access.
BastionZero allows users to log into targets, not networks. To do this, BastionZero uses a phone-home architecture where both the user’s
client and the server-agent running on a target initiate outbound TLS connections to the BastionZero cloud service, and the cloud service
then mediates their access; in this way, targets are accessible to users even if the targets have no open ports. Closing open ports limits an
organization’s attack surface, making their targets undiscoverable to roving malware or malicious port scanning attempts. The phone-home
architecture also allows BastionZero to avoid the requirement for a VPN, to provide access to targets across any number of cloud accounts
and datacenter environments with requiring organizations to maintain additional infrastructure or set up IAM roles or security groups.

Authentication.
BastionZero uses multi-root authentication. Access gated behind Open ID Connect (OIDC) Single Sign On (SSO) to the organizations
existing identity provider (as one of root of trust), and an independent Multi-factor Authentication (MFA) to the BastionZero cloud service (as
another root of trust). Because the user authenticates to two roots of trust each time they log in, this limits the risk that compromised user
credential OR even a compromised root of trust can lead to a breach of the relying party’s infrastructure.

Authorization.
BastionZero’s cloud service acts as a centralized policy manager that controls which user can log into which target as which role or account,
when and for how long. Just-in-time (JIT) access can optionally be granted via an approval workflow that requires a human administrator to
approve any given access request. Centralized policy management presents administrators with a frictionless solution that enforce the
principle of least privilege, and to eliminate privilege creep (where everyone eventually gets access to everything).

Auditing.
Auditing is accomplished by the BastionZero cloud service, which logs and monitors access by introspecting on the connections made from
users to targets. Auditing is identity-aware and allows auditors and security teams to disambiguate access through shared accounts. (For
instance, BastionZero will capture that alice@acme.com logged into server1 as root along with the commands that Alice ran and her session
recordings.) Our unique security model ensures that the cloud service can log sessions but cannot modify them, or inject commands, without
the users permission or knowledge.

BASTIONZERO.COM

ENTITLEMENTSAUTHENTICATION CREDENTIALS

MULTI-ROOT

POLICY LOGGING

AUTHORITYACCESS AUTHENTICATION AUDITINGAUTHORIZATION

BastionZero Trustless Access Platform™

PASSWORDLESS

NO SINGLE POINTS
OF COMPROMISE

NO TARGET PASSWORDS OR
LONG-LIVED CREDENTIALS

NO FRAGMENTED POLICY
OR PERMISSION SPRAWL NO VISIBILITY GAPS

OR UNSTRUCTURED LOGS
NO TRUST ASSUMPTIONS
OR STANDING PRIVILEG

CENTRALIZED IDENTITY-AWARE ZERO

4

Platform Architecture

 The key components of the BastionZero platform are the client, bastion and server-agent.

The client. The client is an open-source executable that runs on the user’s machine and interfaces between the user and the rest of the
system. The client can be installed on Linux, Windows Subsystem for Linux (WSL) and OSx via download or brew.

The server-agent. The open-source server-agent runs on remote targets, enforces simple access controls and interfaces between the
host OS and the MrTAP protocol. The server-agent is available as a systemd agent for Linux or alternatively as a container that can be run on
a kubernetes cluster.

The bastion. The bastion is a cloud service (aka, bastion-as-a-service) that performs centralizing policy management and audit logging.
The bastion is responsible for receiving and delivering messages sent between client and server-agent. The bastion runs a web application
and API which allows administrators to set policy, view and download logs. It is implemented as a globally-distributed micro-service
architecture managed via Kubernetes with auto-scaling workers to handle many concurrent authenticated channels. To ensure low latency,
the bastion is currently staged in the multiple regions, including the US, Tokyo and Frankfurt.

BASTIONZERO.COM

The BastionZero
Cloud Service

Your SSO
Identity Provider

Validate Token

Validate Token

I’m Alice

I’m Alice
Let me access

Server 1 as root

SSO

Policy

Logs

M
F
A

5

BastionZero Token
SSO
Email
Org
Key

google.com
alice@acme.co

Acme Co
alice public key

Signature

6

Simplified login via SSO+MFA. Users can access targets without disrupting their usual workflows simply by completing an SSO + MFA.
This simplified workflow eliminates the need to log into a VPN and then using a separate system (e.g. password manager / ssh keys / PAM) to
log into a target. It also reduces the number of tools an administrator needs to maintain, and our passwordless approach limits that number of
keys an administrator needs to rotate.

Cloud-native autodiscovery and phone-home architecture. Administrators can save time by avoiding manual configuration of
targets. Instead, targets can be provisioned via automated workflows and autodiscovered when the server-agent on the target phones home
(via TLS) to the bastion (i.e. BastionZero’s cloud service). When phoning home, the server-agent provides the target’s name and ‘environment‘
(the target’s group); this information is set via a configuration file on the server-agent and can be provisioned using modern infrastructure
automation tools. This phone home approach means that the target can connect to the bastion from any cloud account or datacenter
environment, as long as the target can make an outbound connection to the Internet; no VPN, public IP or DMZ configuration is required.
Messages sent between a user’s client and a server-agent are sent via (a) a TLS websocket connection initiated by the client to the bastion
and (b) a separate TLS websocket connection from the server-agent to the bastion.

Cloud-agnostic centralized policy. BastionZero simplifies the provisioning of least-privilege access by centralizing policy configuration
at the bastion. Agile policies can be established by mapping from users and/or user groups to targets and/or environments (aka target
groups); this allows for easy on-boarding and off-boarding of users, and supports ephemeral infrastructure and auto scaling groups.
Administrators set policy at the bastion via APIs or a web interface (see Fig 2).

Under the hood, this policy engine is built on OPA (Open Policy Agent) [2], providing a common and expressive policy language. Policies, as
exposed to users, take the form of subject, verb, resource. The subject can be one or more users (from the IdP) or groups (from the IdP), the
verb is a set of actions the users and/or groups are allowed to take, and the resource is one or more groups of targets they are allowed to take
that action on. For instance the policy in Fig 2 says “this set of users are allowed to open a shell/ssh-tunnel/transfer_files as a linux user named
“centos” on all hosts in dev environments”.

BastionZero Capabilities

Log into
targets…
not networks

Manage
identities…
not passwords

SECURITY
AGILITY

Audit log the
entire journey…
not fragments

Just-in-time
access for everyone…
not anyone

Enforce policy
in one place...
not silos

Increase pipeline
automation…
not risk

BASTIONZERO.COM

BASTIONZERO.COM

BastionZero also has just-in-time policies that allow administrators to grant temporary access to any target for users or groups within their
organization. Granting temporary access can be done: (a) through auto-approval, or (b) through manual approval by a human administrator.
Thus, one could write a policy that says“the engineering group of users is allowed to open a connection to k8s-cluster-prod-us-east1 as the
cluster-admin user for one hour upon receiving approval from an administrator".

Centralized audit logs that bridge the identity gap. In many organizations there is a gap between user identity in the IdP (e.g.,
alice@example.com) and users on individual targets (e.g., the ‘root‘ on a linux server, or cluster-admin on a Kubernetes cluster). Organizations
might share credentials for different linux users (eg root, dev, test, secops) across multiple humans or service accounts. So how do you map
user identities (alice@example.com) to users on targets (root on a linux server)! Alice, Bob and Eve can all have the authority to spawn an
SSH tunnel under the dev role user on a host, but how do you determine which of them actually did!

BastionZero solves both of these problems for Kubernetes, linux shells and SSH/SSH tunnels. The bastion policy allows enforcing which
users (OIDC identities e.g., Alice@example.com) can assume which role users in: Kubernetes, linux shells and SSH/SSH tunnels. Additionally
the logs that we record contain both the user (OIDC identities) and the role user, thus bridging the identity gap.

Trustless access. BastionZero’s trustless access model eliminates the security risks typically associated with controlling access via a
cloud service. We introduce the cryptographic MrTAP protocol, that protects the communication from the client to the server-agent against a
compromised bastion. With MrTAP, once the user is authenticated, and if policy allows, an authenticated channel is created from the client to
the server-agent. (The authenticated channel is established once the user has authenticated to both roots of trust — the IdP and the bastion.)
The channel is tunneled inside the client " bastion websocket and the server-agent"bastion websocket. Digital signatures are used to
ensure that the bastion cannot violate the integrity of messages sent via this channel. The entire implementation of the MrTAP authenticated
channel is open source and can be viewed by inspecting the client and server-agent open-source repositories.

A truly passwordless approach. As part of our commitment to trustlessness, the bastion does NOT hold credentials, passwords or
secrets that allow it to access a target. This ensures that the bastion does not have privileged access to a target and prevents it from
becoming a single point of compromise. In fact, we completely eliminate the distribution and storage of credentials, which also improves
administrator productivity by reducing the workload around secret distribution, revocation and rotation.

7

ACCESS

Integrate
fragmented
solutions

Centralize
policy
management

Automate
workflows
securely

AUTHENTICATION

AUTHORIZATION

AUDITING

BASTIONZERO.COM

Let’s take a deep dive into BastionZero’s unique trustless security model. Trustlessness ensures that no part of BastionZero system becomes
a single point of compromise; that is, that a compromise of one element of the BastionZero platform does not lead to a wholesale compromise
of an organization’s targets. BastionZero does this by introducing two independent roots of trust for access: (1) the bastion cloud service and
(2) the organization’s Identity Provider (IdP). Trustlessness means that neither the IdP nor BastionZero’s bastion cloud service become a
single point of compromise.

We start by reviewing the classic security model for zero-trust access, highlight key problems with this model, and then discuss trustless
access and how BastionZero achieves trustless access.

Trustless access

For example, in 2001, the FluffyBunny hacking group replaced SSH clients with a malware that exfiltrated long-lived SSH credentials and then
later used those credentials to log into targets, execute a local privilege escalation attack, and repeat. A zero-trust approach would have this
limited attack surface because even if the attacker could steal short-lived tokens, these tokens may expire before the attacker could use
them.

Multi-Factor Authentication (MFA) plays an important role in any zero-trust approach. MFA ensures that if the user’s IdP username and
password are compromised, their authentication remains secure as long as their MFA is not also compromised. MFA would have prevented
the FluffyBunny attack because even if the attacker had stolen a victim’s username and password, the attacker would also need to
compromise MFA authentication in order to impersonate the victim.

Classic zero-trust. Zero-trust access boils down to ensuring that users do not hold long-lived keys, credentials, or tokens. Zero-trust
access also requires that the user’s network location (e.g. the fact that they are behind a VPN) is not used as the sole factor to determine
whether or not they have access to a target. Instead, each time a user’s client wants to access a target, the client must first prove its identity
e.g., via IdP authentication and/or MFA. The client is then issued a short-lived token that allows for access until it expires. The use of
short-lived tokens reduces the risk that a compromise of the client leads to a compromise of infrastructure targets.

The problem with classic zero-trust access.

8

CredentialsSSO + MFA

Let me access server 1
I’m Alice

The problem with traditional zero-trust. A traditional zero-trust approach usually eliminates long-lived user credentials in favor of
single, centralized privileged root-of-trust that grants short-lived credentials to users. (Popular approaches include putting all credentials in a
secrets vault or a PAM, setting up a certificate authority, or controlling all access via a single centralized IdP.) However, creating a single
privileged root-of-trust also creates an attractive single point of compromise for attackers. As an example, in late 2020, the SolarWinds
attackers exploited this type of architecture to compromise the IdP in their victim’s networks, and then used the compromised IdP to issue
tokens to themselves that allowed them to access any target in the victim’s infrastructure. The attack technique of compromising an IdP to
forge tokens is sufficiently common to motivate MITRE to assign it with an attack technique ID. In 2022, Uber was breached by an attacker
that compromised its centralized PAM
and secret store.

Importantly, MFA alone does not prevent these attacks. In most commercial products that use MFA, the MFA is checked by the centralized
root-of-trust (e.g., the IdP). But if the centralized root-of-trust is compromised, it does not matter if it is checking MFA because the attacker
will just ignore the MFA and issue tokens for whatever target it wants to attack.

BASTIONZERO.COM

9

The PK Token. To access a given target, the client must present the target with token
which we denote as the PK Token . This token acts almost like a certificate that attests
to the user’s short lived public key, pku. The PK Token is digitally signed both by the IdP
and the bastion cloud service. The two signatures on this token are validated directly
by the server-agent on the target, using the public key of the IdP and the public key of
the bastion. It is very important that the server-agent independently checks these two
signatures against the two independent roots-of-trust (rather than just blindly trusting
the bastion to signal when a user should be allowed to access the target). The two
independent signatures that are validated against the two independent roots-of-trust
is a key factor in eliminating the single point of compromise created by traditional
zero-trust solutions.

No more bearer tokens, sign your messages! A common pattern in zero-trust systems to to give user short-lived bearer token (e.g., a
JWT) that the user then repeatedly presents to multiple different targets in order to gain access. A bearer token is essentially a token that
contains a secret; that secret proves that the user is authorized to gain access to a target. Bearer tokens require a choice between two evils:
(1). if messages are sent in the clear, then a compromised intermediary can tamper with the messages sent by the holder of the bearer token,
or to steal the bearer token itself and use it to impersonate the user.

Trustless access still requires a user to prove its identity before it accesses a target. However, a trustless access does this without introducing
a single point of compromise. Instead, BastionZero uses multiple independent roots-of-trust for authentication.

The first root-of-trust is the organization’s IdP, which authenticates the user via SSO, MFA and other mechanisms (e.g., device context). The
other root of trust is run as a subsystem of the bastion, which authenticates the user with an independent MFA. The independent MFA
performed against the bastion cloud service protects against a compromised IdP.

How BastionZero achieves
trustless access

PK Token
SSO
Email
Org
Key

google.com
alice@acme.co

Acme Co
alice public key

Signature

10

Why it works. To constrain a compromised bastion from compromising the security of the server-agent, the server-agent validates the
PK Token against the two roots-of-trust. Because the bastion can not authenticate over OIDC as a user of that organization, it follows the
bastion can not generate a valid PK Token which attests to membership in that organization. The bastion can learn a user’s PK Token, but
learning a PK Token does not provide access unless you can also control the key pair (sku, pku) certi!ed in the PK Token (so that you can
use the secret key to generate a signature. Securityi is maintained because the bastion never has access to the user’s secret key sku.

There are two key virtues of cryptographic digital signatures. First, signatures allow the MrTAP bastion to read messages without granting the
bastion the ability to tamper with the messages. This follows because signatures are cryptographically bound to the message being sent,
while bearer tokens are not. Second, with signatures, the user’s authentication secret key sku never needs to be sent outside of the client. With
bearer tokens, the secret is necessarily exposed in the bearer token itself. Signing messages creates an authenticated channel that prevents
bastion from impersonating the user.

 Alternatively, (2). messages could be encrypted to protect the bearer tokens (thus also encrypting the bearer tokens), but this comes at the
cost of allowing intermediaries to perform security-critical functions like logging and inspecting messages. Because our cloud bastion must
not be a single point of compromise, and because it must also log and enforce policy, neither of these options are acceptable. Instead, we use
digital signatures to sign and authenticate the very commands and communication content that users are sending and receiving from
infrastructure targets.

Identity, policy and access control. Identity is authenticated and enforced at the server-agent and bastion based on organizational
membership, groups and other claims made in the PK Token and approved by the root of trusts. To prevent a compromised bastion or IdP
from impersonating a user, we require the server-agent on the target to validate every connection made by a user using the PK Token,
which contains a signature from both root of trusts.

BASTIONZERO.COM

The BastionZero
Cloud Service

Your SSO
Identity Provider

Validate Token

Validate Token

I’m Alice

I’m Alice
Let me access

Server 1 as root

SSO

Policy

Logs

M
F
A

Automated deployment is supported, because installing BastionZero on a cluster only requires an administrator (or provisioner) to add a
bastion generated helm chart or yaml file to the kubernetes cluster config. This file instructs the cluster to create a new container running a
server-agent on the kubernetes cluster and then binds this server-agent to the control plane of the cluster. The server-agent in the container
then phones home is autodiscovered by the bastion. Once the user logs in with the client the client creates a (ephemeral) local kubernetes
config file instructing the user’s kubernetes tools to route their API calls through the client. The client wraps them in an MrTAP authenticated
channel and sends them through the bastion to the server-agent.

zli kube. A common problem with logging in kubernetes is that when a user’s runs a command (e.g., ‘kubectl get pods‘) the
kubernetes cluster only sees the API calls, but not the command that generated those API calls. (A single kubectl command can
generate between 10-200 API calls, making it difficult for administrators to glean useful information from the resultant logs.)

To address this issue we have developed a tool and packaged it with the MrTAP client which wraps the kubectl cli, capturing the
user’s command, and associating that command with the resulting API calls in our logs. This tool, zli kube, runs the same set of
commands as traditional kubectl, but records the english text of the command in the BastionZero logging service.

BastionZero supports access to kubernetes clusters, starting and reattaching to interactive shell sessions, SSH connections/tunnels and TCP,
HTTPS or database connections. The MrTAP protocol provides both a communication channel to transport these protocols to targets in
private networks and an authentication layer to ensure only authorized parties can communicate with

these targets. Because the MrTAP bastion can read and understand these protocols, the bastion can provides application-specific logging
and policy enforcement.

Usecases
BASTIONZERO.COM

BastionZero supports access to kubernetes using only the kubernetes API, which makes it completely
cloud-agnostic and interoperable with both managed and unmanaged kubernetes clusters in any
cloud or datacenter. Our approach eliminates passwords and long-lived keys for kubernetes
authentication, as well as the need to manage kube-config files. It also reduces attack surface because
kubernetes APIs no longer need to be exposed to the public internet. (This is a serious problem; in 2022
a study found over 300k kubernetes APIs exposed to the public internet.) Our approach allows users to
use their existing tooling to
interact with the cluster (e.g., kubectl, k9s or lens) while the MrTAP protocol works silently in the
background.

Kubernetes access

11

BASTIONZERO.COM

12

The server-agent does not interfere with any existing SSH clients running on the target, and can run alongside an existing SSH client
without disrupting it.

SSH tunnels allow BastionZero to support communication that is confidential from the bastion (i.e., the bastion cannot introspect on
this communication), while preserving its other multi-root zero-trust security benefits.

By suppporting SSH, BastionZero can tunnel any protocol that can be tunneled through SSH, i.e., any protocol built on TCP.

Whenever an SSH tunnel is created in BastionZero, the client and server-agent establish a one-time SSH key for that tunnel using
the MrTAP protocol. To do this, the SSH key is generated by the client and sent over the MrTAP authenticated channel to the
server-agent. The SSH tunnel is encapsulated in an HTTPS websocket session from the client to bastion and a separate HTTPS
websocket session from the server-agent to the bastion.

Our server-agent can be installed on Linux targets via package managers (yum or apt) or using an
ansible or bash script. The server-agent is designed so that new targets can be provisioned and phone
home to the bastion without any manual intervention. This supports common infrastructure operation
patterns like autoscaling groups of servers, or the spinning down of test servers at night and the spinning
them up again in the morning.

Our approach improves administrator productivity by eliminating SSH key management. Instead, SSH keys are created on the fly, and
authorized via MrTAP PK Tokens and revoked when the SSH tunnel is torn down.

BastionZero also simplifies SSH configuration management, because the client autogenerates a local SSH config file on the user’s
machine that specifies the SSH hosts that should be accessed via BastionZero.

BastionZero also reduces attack surface, because our phone home architecture allows organizations to close all the open SSH ports
on their targets, while still using SSH. The SSH server, running on the same host as server-agent can optionally be configured to only
accept SSH connections from localhost, so that even hosts on the same private network would not be able to connect to the SSH
server.

Server Access

Interactive shells. A user can start interactive shell sessions with the target, if allowed by policy. The user interacts with a terminal emulator
on client, and her keystrokes are signed and sent over a MrTAP authenticated channel. The output from the shell is returned to the user via an
auxiliary output channel.

The bastion can log all keystrokes sent, and record the terminal output. The bastion then build a searchable command history of all
commands entered by all users (like ‘.bash_history‘ but searchable). By default the bastion only records the commands a user entered. An
admin can set a policy for a particular host that will record all shell input and output aka, session recording.

SSH and SSH Tunnels. SSH and SSH tunnels tend to be central to developer and operator workflows and scripts that encode venerable
institutional wisdom. There are several reasons why the ability to create SSH tunnels in BastionZero is so powerful.

BASTIONZERO.COM

13

Service accounts.
Infrastructure access isn’t just for humans; it’s also crucial for scripts and build processes and other automated processes. And the problem
of managing access for these automated processes is just as important as the problem of managing human access; we don’t want to be
handing out long-lived SSH keys to CI/CD runners and Jenkins servers, for the same reasons we don’t want to give them out to humans. This
is where BastionZero’s service account comes in. In a traditional solution, a service account is given a single a long-lived credential that it
stores and uses for access, which goes against the ethos of a zero-trust security model. BastionZero sidesteps this by using a multi-root
authentication model.

To support trustless access, BastionZero service accounts authenticate to two roots of trust: one root of trust is the the bastio and the other
one is any independent OpenID provider. To authenticate to BastionZero, a service account must hold two secrets: (1) the secret used for
MFA to BastionZero and (2) the private key corresponding to the public key in the JWKS url. Authentication to two independent roots of trust
stops either root of trust becoming a single point of compromised, supporting trustless access. Also, if these two secrets are stored in different
locations (e.g., one in a TPM and the other in a secret vaults), we also get multi-factor authentication for service accounts.

BastionZero service account support several exciting usecases, including eliminating SSH deploy keys for CI/CD runners, and setting up
just-in-time polices that limit the access of a CI/CD runner to known time windows while providing robust audit logging capabilities.

In addition to SSH tunnels MrTAP supports proxying HTTPs, database and TCP
connections from a localhost socket on a user’s machine through MrTAP
authenticated channel to server-agent and from server-agent to the final destination.
This way, a sensitive web application or databases can be hosted in a private network,
and access can be controlled by fine-grained policy set at the MrTAP bastion. Unlike
most VPNs, our access policy is granular to users and services.

Web Servers and TCP.

Secret Key

BZ Auth´n Secret
JWKS Auth´n Secret

JWKS

Policy

Logs

Bastionzero Token

Account
Org
Key

5J3Na@acme.github.com

Acme Co
Pub key

Signature

USER RESOURCES

MrTAP

MU
LTI-

ROOT-TRUSTLESS ACCESS PROTOCOLACCESS

AUTHORIZATION

BASTIONZERO.COM

14

BastionZero supports access to infrastructure by consolidating fragmented solutions for access with a future-proof trustless security model.
The platform increasing administrator’s productivity by eliminating passwords to individual targets, and increases user productivity by
providing a frictionless access experience that doesn’t disrupt existing user workflows.

At the heart of BastionZero platform is the cryptographic MrTAP protocol. MrTAP that uses multiple roots of trust to eliminate passwords and
long-lived credentials and to provide trustless access. The MrTAP cryptographic protocol enables a user to have their public key certified by
an OIDC Identity Provider (as one root of trust), and then have this certification cosigned by the BastionZero cloud service (as a second
independent root of trust). That way, if one root of trust is compromised, the other root of trust is still able to protect the integrity of
infrastructure access. While OIDC was not inherently designed to support this, the MrTAP protocol is compatible with all deployed OIDC
Identity Providers. This OIDC-based certificate is used to authenticate and digitally sign all messages sent from the user via the bastion to a
target (linux machine, kubernetes cluster, database). The protocol also allows the bastion cloud service to record audit logs of the actions
taken by the user; thus, compromised targets need not be trusted to accurately record and send logs.

BastionZero allows users to log into targets, rather than networks. This simplifies and secures infrastructure by eliminating VPNs, bastion
hosts, PAMs and SSH/kubernetes/database key management systems. Because the platform is cloud-agnostic, there is no need to set up
IAM roles across different clouds and accounts or manage disperate access systems in different accounts and environments. Because the
platform integrates with existing identity providers, it simplifies the process of on- and off-boarding users, and providing them with short-lived
access to sensitive targets. BastionZero’s rich identity-aware audit logs support an organization’s compliance efforts and empower security
and devops team to respond to security incidents and conduct forensic analyses.

Conclusion

